




喷涂供粉量的操控由流速气压和流化气压决定,供粉的空气压力不能太大,否则将使粉末的沉积率下降,收回粉末添加,上粉率变低。可是,对于形状杂乱得工件,因为工件阴角处有静电屏蔽的死角,可增大喷涂气压,使粉末有一定的喷发力。涂层的厚度与供粉量成正比,喷涂一段时间后,涂层的厚度添加减慢,喷涂生产设备,再增大供粉量时,沉积率减小,使收回粉添加。
静电电流以及气压参数对喷涂作业的影响分别是:
喷涂静电电流:静电电流过高,简单发生放电并会击穿粉末的涂层;喷涂静电电流过低,使所带有电荷的粉末数量削减,然后下降了喷涂功率。雾化气压:雾化气压过高会引起过喷,使喷涂功率下降,会加重粉末对喷枪的磨损,削减喷枪寿数;雾化气压过低,喷涂技术,则引起涂层不均匀,且简单使送粉部件阻塞。流速气压:流速压力越高会使得粉料沉积的速度越快,有利于快速得到期望厚度的涂层,可是过高就会添入粉末使用量和静电喷枪的磨损速度。喷涂流化气压:流化气压过高会发生大量气泡,然后下降粉料密度使供粉量下降,使生产功率下降,流化气压过低简单呈现供粉量不足或者粉末结团然后影响上粉率。
喷涂控制器试验后,在实验室完成喷涂试验,进行现场喷涂试验。将喷枪与控制器连接,进出口空气连接良好。流量和雾化压力不能反转,否则粉末不能正常供给。根据喷涂经验,喷涂,在电压模式下,喷涂的静态电压设定为7_5KV,流量为400KPa,雾化压力为1_SOKPao。喷涂运行指示灯在启动后点亮,并通过喷枪触发。可以看出,触发指示灯在触发时点亮,而触发指示灯在松开手时关闭。触发后,控制器的输出电压立即调整到7_5KV。
喷涂经过短时间的调整,流量和雾化压力也调整到400KPa和1_SOKPa。实际数据显示149KPa,因为会有一些压力波动。压力波动范围为0}2KPa,但不足以影响喷涂作业。喷涂前,工件有明显的金属光泽;喷涂后,附着在工件表面上的粉末的颜色为灰白色。喷涂喷涂效果可以看出,粉末厚度基本满足要求,具体的效果需要改变喷涂参数继续测试。对于喷涂装粉率,需要大量的喷涂作业统计数据进行分析。下一步的工作不仅需要对控制器的输出性能进行优化和微调,而且需要与整个喷涂管线配合进行自动喷涂测试,喷涂完成整个静电喷涂控制系统的实现和测试。本章介绍了静电喷涂控制器的运行测试、通信测试、输出测试和现场测试,分析了测试过程和结果,并给出了测试结果。在每次试验中,喷涂工艺,基本达到了设计目标,最终的现场试验也可以完成喷涂作业任务。
数据发送程序根据数据类型的优先级发送封装的数据uSendDataFlag对应的位,指示发送完成。喷涂发送数据包之间的时间间隔是2ms,并且在发送数据之后清除。计时器用于对数据进行计时。时间间隔不允许发送到下一次。否则,我们需要等待。数据接收程序设计采用串行IDLE空闲中断接收数据,喷涂采用双缓冲区接收数据,尽量防止数据丢失。根据我们设计的发送程序,双缓冲区可以完全满足一般的接收需求。接收到数据包后,必须及时处理。否则,当接收到下一个数据包时,它将覆盖将来可以处理的数据。当接收到数据时,它将接收完成标志RevvEndIdFig=1。
对应于喷涂有效数据的数据包将被取出。首先,如果数据不完整,将验证帧的头部和尾部数据的完整性。返回接收错误RX_ERR;如果数据已完成,并且验证CRC检查的正确性以确保接收到正确的数据包,则相同的CRC检查错误返回到接收错误RX_ERR。当数据完全正确时,根据函数代码和错误代码执行相应的处理,并接收正确的RX_OK。当接收到错误时,根据错误信息对错误响应包进行打包,并将其发送回发送方。喷涂控制器和协调器之间通信的数据类型包括主机上传的配置参数、控制器上传的测量参数和状态参数,以及在异常状态下上传的告警参数。控制器操作面板从控制主板接收测量参数和状态参数的数据,并将数据放入RS48_5传输缓冲区中,以便上传到协调器。如果尚未发送数据并生成新数据,则直接覆盖原始数据。
喷涂